Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques.

نویسندگان

  • Frank Tacke
  • David Alvarez
  • Theodore J Kaplan
  • Claudia Jakubzick
  • Rainer Spanbroek
  • Jaime Llodra
  • Alexandre Garin
  • Jianhua Liu
  • Matthias Mack
  • Nico van Rooijen
  • Sergio A Lira
  • Andreas J Habenicht
  • Gwendalyn J Randolph
چکیده

Monocytes participate critically in atherosclerosis. There are 2 major subsets expressing different chemokine receptor patterns: CCR2(+)CX3CR1(+)Ly-6C(hi) and CCR2(-)CX3CR1(++)Ly-6C(lo) monocytes. Both C-C motif chemokine receptor 2 (CCR2) and C-X(3)-C motif chemokine receptor 1 (CX3CR1) are linked to progression of atherosclerotic plaques. Here, we analyzed mouse monocyte subsets in apoE-deficient mice and traced their differentiation and chemokine receptor usage as they accumulated within atherosclerotic plaques. Blood monocyte counts were elevated in apoE(-/-) mice and skewed toward an increased frequency of CCR2(+)Ly-6C(hi) monocytes in apoE(-/-) mice fed a high-fat diet. CCR2(+)Ly-6C(hi) monocytes efficiently accumulated in plaques, whereas CCR2(-)Ly-6C(lo) monocytes entered less frequently but were more prone to developing into plaque cells expressing the dendritic cell-associated marker CD11c, indicating that phagocyte heterogeneity in plaques is linked to distinct types of entering monocytes. CCR2(-) monocytes did not rely on CX3CR1 to enter plaques. Instead, they were partially dependent upon CCR5, which they selectively upregulated in apoE(-/-) mice. By comparison, CCR2(+)Ly-6C(hi) monocytes unexpectedly required CX3CR1 in addition to CCR2 and CCR5 to accumulate within plaques. In many other inflammatory settings, these monocytes utilize CCR2, but not CX3CR1, for trafficking. Thus, antagonizing CX3CR1 may be effective therapeutically in ameliorating CCR2(+) monocyte recruitment to plaques without impairing their CCR2-dependent responses to inflammation overall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization.

AIMS Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets-Ly6C(hi) and Ly6C(lo)-to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, C...

متن کامل

Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression.

Atherosclerosis is a chronic inflammatory disease, and developing therapies to promote its regression is an important clinical goal. We previously established that atherosclerosis regression is characterized by an overall decrease in plaque macrophages and enrichment in markers of alternatively activated M2 macrophages. We have now investigated the origin and functional requirement for M2 macro...

متن کامل

Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6C and Ly6C Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice

Background—Monocytes are critical mediators of atherogenesis. Deletion of individual chemokines or chemokine receptors leads to significant but only partial inhibition of lesion development, whereas deficiency in other signals such as CXCL16 or CCR1 accelerates atherosclerosis. Evidence that particular chemokine pathways may cooperate to promote monocyte accumulation into inflamed tissues, part...

متن کامل

Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice.

BACKGROUND Monocytes are critical mediators of atherogenesis. Deletion of individual chemokines or chemokine receptors leads to significant but only partial inhibition of lesion development, whereas deficiency in other signals such as CXCL16 or CCR1 accelerates atherosclerosis. Evidence that particular chemokine pathways may cooperate to promote monocyte accumulation into inflamed tissues, part...

متن کامل

Arteriolar and Venular Remodeling Are Differentially Regulated by Bone Marrow-Derived Cell-Specific CX3CR1 and CCR2 Expression

The chemokine receptors CCR2 and CX3CR1 are critical for the recruitment of "inflammatory" and "resident" monocytes, respectively, subpopulations that differentially affect vascular remodeling in atherosclerosis. Here, we tested the hypothesis that bone marrow-derived cell (BMC)-specific CCR2 and CX3CR1 differentially control venular and arteriolar remodeling. Venular and arteriolar lumenal rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 117 1  شماره 

صفحات  -

تاریخ انتشار 2007